
1

This lecture will focus on the Hardware Description Language (HDL),
SystemVerilog (SV). You will not learn this HDL by listening at lectures.
Instead, you will be learning SV by designing actual circuits and testing them.

Lecture 2 Slide 1PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Lecture 2

Hardware Design with
SystemVerilog

Prof Peter YK Cheung
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
E-mail: p.cheung@imperial.ac.uk

http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/

2

Here is a list of things that you will learn in this lecture. Some of the
slides are derived or modified from the slides provided by the publisher
of the Harris & Harris book. This is another recommended textbook for
this module. It is much thinner than the Patterson & Hennessy book,
and is a more suitable textbook in many ways to support this module.
Unfortunately, our library does not have an electronic copy of H&H for
student to borow. If you can acquire a copy of this textbook, I
recommend it highly.

Lecture 2 Slide 2PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Learning outcome for week 2

v Modules in SystemVerilog (SV)
v Syntax, operators, number formats in SV

v Behavioural vs structural description

v Combinational circuit description
v Sequential circuit description

v Blocking and non-blocking assignment

Slides in this lecture are derived and modified from:

“Digital Design and Computer Architecture (RISC-V Edition)” by
Sarah Harris and David Harris (H&H), Morgan Kaufmann, 2022

3

These are the pros and cons of using a HDL instead of schematic to specify
digital hardware:

ü Flexible & parameterisable

ü Excellent input to optimisation & synthesis

ü Direct mapping to algorithms

ü Excellent for datapaths

ü Easy to handle electronically (only needing a text editor)

✕ Serial representation

✕ May not show overall picture

✕ Need good programming skills

✕ Divorce from physical hardware

No modern digital integrated circuits or FPGA based designs that are not
specified in some sort of HDL from which the final design is synthesized.

For this module, you will learn a particular level of abstraction of the
processor hardware known as Register Transfer Level (RTL). In RTL
specifications, all combinational logic are sandwiched between registers
controlled by one or more clock signals.

Lecture 2 Slide 3PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

v Hardware description language (HDL):
§ Specifies logic function only

§ Computer-aided design (CAD) tool produces or synthesizes the
optimized gates

v Most commercial designs use HDLs
v Two leading HDLs:

§ SystemVerilog
!Developed in 1984 by Gateway Design Automation (Verilog)
! IEEE standard (1364) in 1995
!Extended in 2005 (IEEE STD 1800-2009)

§ VHDL 2008
!Developed in 1981 by the Department of Defense
! IEEE standard (1076) in 1987
!Updated in 2008 (IEEE STD 1076-2008)

Hardware description Languages

4

After specifying your hardware in SystemVerilog HDL, you need to make sure that
your design works according to specification. Simulation tools such as circuit
simulators, Matlab, Mathematica etc. allow users to predict circuits and systems
behaviour WITHOUT having to implement the actual electronic system. This saves
both time and money. Furthermore, it is very hard to find a bug in a million or
billion transistor circuit on a physical chip because there is no easy way to access
internal signals. (This statement is not entirely true. There is a technique used called
“scan chain” or JTAG, which allows such internal access, but it is not easy to use.)

After simulation, the design is ”translated” to low level building blocks (such as
gates and flops) through a special type of hardware compiler to perform synthesis.
This is the stage at which circuits can be optimized. For example, redundant gates
(such as a 2-input NAND gate with one input always 0) are eliminated. Synthesis
produces a network of interconnected building blocks, known as the netlist. At this
stage, the design is still not necessary linked to any technology for implementation.

The netlist is then further processed to produce the final physical design. This final
stage involves many steps such as technology mapping, placement, routing, timing
analysis, test vector generation, test coverage analysis etc. We will NOT be
considering any part of this stage of design in this module.

Lecture 2 Slide 4PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

HDL to Gates

v Simulation
§ Inputs applied to circuit
§ Outputs checked for correctness
§ Millions of dollars saved by debugging in simulation instead of

hardware

v Synthesis
§ Transforms HDL code into a netlist describing the hardware (i.e., a list

of gates and the wires connecting them)

v Physical design
§ Placement, routing, chip layout, …… – not considered in this module

IMPORTANT:
 When using an HDL, think of the hardware the HDL should produce, then write the

appropriate idiom that implies that hardware.
 Beware of treating HDL like software and coding without thinking of the hardware.

H&H 171-173

5

A SystemVerilog design consists of basic units called “modules”. Each
module, like a C function, provides specific functionality. Unlike C functions,
modules are not “called” but “instantiated”. That means that each time you
use a module in SV, you “clone” a separate entity – the clone has a totally
separate existence.
SV is entirely hierarchical. Modules can instantiate other modules.
All modules have inputs and outputs as shown on the slide.

There are many different level of abstractions in specifying a module:
1. You can specify something at a behavioural level where the SV syntax

allows you to describe the abstract functional behaviour rather than
physical structure of the hardware.

2. Alternatively, you may describe a module in a structural form. For
example, a top-level (chip level) module may consists of numerous lower-
level modules interconnected together.

Lecture 2 Slide 5PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Module Declaration

v Two types of Modules:
§ Behavioral: describe what a module does

§ Structural: describe how it is built from simpler modules

v module/endmodule: required to begin/end module
v example: name of the module

6

Here is a simple example of a combinational circuit consisting of many
Boolean operations described in SV as a Boolean equation. We use the
“assign” keyword to specify combinational circuit. We then use ~, & and | for
NOT, AND and OR Boolean operations respectively.

Sythesis will produce optimized logic as shown in the schematic. Simulation
will produce a trace file (i.e. a file contains signal values over time), which can
be plotted as timing diagrams.

Lecture 2 Slide 6PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Behavioural Description

synthesis

simulation

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H), H&H 174

7

Here are some basic rules about naming variables in SystemVerilog. It is very
much like C or C++.

Lecture 2 Slide 7PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Syntax
v Case sensitive

§ e.g.: reset and Reset are not the same signal.

v No names that start with numbers
§ e.g.: 2mux is an invalid name

v Whitespace ignored
v Comments:

§ // single line comment

§ /* multiline
§ comment */

8

Combinational circuit is easiest to specify using behavioural specification with
Boolean operators. You can also choose to provide structural description
with interconnected gates as shown on the right.

It is NOT advisable to describe low-level modules in a structural way. It is
both tedious, prone to error and not easy to read.

We normally only use structural description when we connect large modules
together at a higher level of the design hierarchy.

Lecture 2 Slide 8PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Structural Description

Behavioural Structural

9

Here is an example where signals are bundled into multi-bit bus. In this case,
they are 4-bit wide as [3:0]. SV does not restrict you to name the bus from
bit 3 to bit 0. You could declare the signals as, say, [4:1] instead. However,
we adapt the notation that LSB is bit 0, and MSB is WIDTH-1, in this case 3.

Now the continuous assignment keyword “assign” results in bit-wise
operation. For example:
 assign y1 = a & b;
Means:
y1[3] = a[3] & b[3], y1[2] = a[2] & b[2]. ……

Lecture 2 Slide 9PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Bitwise Operators

H&H 177

10

The ‘&’ operator can also be used with a single operand as shown here. This
is called a “reduction” operator. It reduces multiple bits of a[7:0] to a single
bit y. It basically ANDs all bits of a[7:0] together as shown in the slide.

Lecture 2 Slide 10PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SysytemVerilog: Reduction Operators

H&H 178

11

The conditional assignment operator (as found in C or C++) is:
 cond ? True_value : False_value

Therefore, assign y = s ? d1 : d0;

Is the same as: If s is true, y = d1, else y = d0.

This effectively produces a multiplexer as shown here.

Lecture 2 Slide 11PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Conditional Assignment

H&H 179

12

For most modules, there are internal signals which are neither inputs nor
outputs. The module here is a single bit full adder. There are two internal
signals p, g.

These signals are not “visible” outside the module and are declared as local
signals (similar to local variables in C++ functions).

Lecture 2 Slide 12PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Internal Signals

H&H 182

13

Here are all the operators that SystemVerilog understands. They are listed
here with their precedence.

Lecture 2 Slide 13PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Precedence of operators

Highest

Lowest
H&H 183

14

When using SystemVerilog to describe hardware, always remember that you are
NOT writing a program. All “variables” are in fact signals. So, when specifying
number, beware that you are using physical wire.

Therefore numbers are specified with number of bits explicitly stated. The
general format is N’Bxxxx.

N is the number of bits. B is the base: b = binary, d = decimal, h = hexadecimal.

See above. If you don’t provide bit and base specification, the number is
assumed to be 32 bits and in decimal by default. Not specifying the size (i.e.
number of bits) of a signal in a design is not recommended.

Lecture 2 Slide 14PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Number Format

Number # Bits Base Decimal
Equivalent

Stored

3'b101 3 binary 5 101

'b11 unsized binary 3 00…0011

8'b11 8 binary 3 00000011

8'b1010_1011 8 binary 171 10101011

3'd6 3 decimal 6 110

6'o42 6 octal 34 100010

8'hAB 8 hexadecimal 171 10101011

42 Unsized decimal 42 00…0101010

Format: N'Bvalue
 N = number of bits, B = base
 N'B is optional but recommended (default is decimal)

H&H 184

15

The syntax shown here is very unlike C or C++, and is particularly important to
specification of hardware.
{ . } is called a concatenation operation. { 1, 0, 1, 1} forms a 4-bit number
4’b1011.

In the example above, a[2:1] is a two bit number a[2] and a[1].

{ 3 {b[0]} } forms a three bit number with b[0] repeated 3 times.

Lecture 2 Slide 15PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Bit Manipulations (1)

vIf y is a 12-bit signal, the above statement produces:

vUnderscores (_) are used for formatting only to make it
easier to read. SystemVerilog ignores them.

16

This is an example of slicing and merging different bits of signals d0 and d1 to
form an 8-bit output y.

If d0 = 8’b10110101, and d1 = 8’h5A, work out what is y for s = 0, and s = 1?

Lecture 2 Slide 16PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Bit Manipulations (2)

H&H 190

17

We normally use “logic” to specify a signal to be a signal which has values of
0 or 1. However, there is a signal type tri which can take on three values: 0, 1,
or z, where z is high impedance. This allows SystemVerilog to describe tri-
state outputs.

In this module, and if en=1, then y = a. If en=0, the output y is tri-state and is
therefore not driven by this module.

Lecture 2 Slide 17PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Floating Output Z

vNote that Verilator does not handle floating output Z
H&H 185

18

Digital circuits have delays. SystemVerilog provides constructs to specify
such delays (default in ns). However, Verilator ignores all such specifications:
Verilator assumes that all combinational logic output changes immediately
with inputs. As such, Verilator is NOT suitable to verify physical digital circuits
– it can only be used for functional verification.

Lecture 2 Slide 18PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Delays

v Delays are for simulation only! They do
not determine the delay of your
hardware.

v Verilator similator ignores delays – it is
cycle accurate without timing.

H&H 187

19

Sequential logics are specified using the pattern:

The “always” followed by @(sensitivity list) means that when any signal in
the sensitivity list is asserted, “statement” is executed.

All sequential circuits are described in this form.

Lecture 2 Slide 19PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Sequential Logic
v SystemVerilog uses idioms (or special keywords or groups of

words) to describe latches, flip-flops and FSMs

v Other coding styles may simulate correctly but produce incorrect
hardware

v GENERAL STRUCTURE:

v Whenever the event in sensitivity list occurs,
statement is executed

H&H 191

20

SystemVerilog has a specific syntax for D flip-flops.
 aways_ff @(posedge clk)
will synthesize one or more registers that are triggered on positive edge of
the signal clk.

Note that you can call your clock signal anything, e.g. fred would do equally
well. There is NO SIGNIFICANCE in the name itself. However, it is of course
advisable to use a signal name that is meaningful.

Note also that the statement to execute in this case is:
 q <= d;

This is called non-blocking assignment (but don’t worry about what it is
called for now). The effect of this module is: on rising edge of clk, the 4-bit
value of d is transferred to q.

This will synthesize to 4-bit D flip-flop.

Lecture 2 Slide 20PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: D Flip-Flop

H&H 192

21

You should ALWAYS add a reset control to your flops. Otherwise, your digital
system may power up in a random state.

Reset can be implemented as synchronous or asynchronous. Synchronous
reset means that reset happens only on the active edge of the clock signal.
Asynchronous reset can happen anytime whenevert the reset signal is
asserted and is independent of the clock.

The slide shows the two forms of reset description. For asychonrous case, it
also shows how the sensitivity list can contain multiple conditions.

Lecture 2 Slide 21PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog: Resettable D Flip-Flop

Synchronous resetAsynchronous reset

H&H 193

22

There is a form of always block which allows the specification of
combinational circuits. However, there is no advantage in this form of
specification as compare to multiple assign statements.

Lecture 2 Slide 22PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Combinational Logic using always

This hardware could be described with assign statements using fewer lines
of code, so it’s better to use assign statements in this case.

H&H 198

23

A more common use of the always_comb statement is when it is used with
the case statement.
Here is a 7-segment decoder specification. A 4-bit binary input in[3:0] is
decoded to provide 7 output signals to drive a 7-segment display. The
outputs are assumed to be low-active, i.e. the segments turns ON when the
output signals [6:0] are driven LOW.
The function of the decoder can be specified in the truth table shown.
The case statement here shows a direct way to specify such a decoder.

In general, any truth tables or ROMs can be specified in this way.

Lecture 2 Slide 23PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Combinational Logic using always-case

H&H 199

24

Here is another example called priority encoder. always_comb statement
uses if-else constructs. The output y[3:0] reports the position of the first ‘1’
in the input from MSB to LSB. So if a[3] is ‘1’, then y[3] is ‘1’ etc.

This is call a priority encoder because it detects the highest priority signal
being set. The if-else statement is perfect for such description because it
fully describes the behaviour of the circuit explicitly.

Lecture 2 Slide 24PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Combinational Logic using if-else
v Prioity encoder circuit

H&H 202

25

Here is an alternatively method to do the same thing using the casez
statement.

Here the conditions are specified with ‘?’ meaning “don’t care”. Note that
with 4-bits input, there are 16 possibilities. ‘?’ allows these bit values to be
either ‘0’ or ‘1’ (i.e. don’t care).

However, beware that not all cases may be covered by such specifidation.
You MUST always specify the default case (i.e. when the input a value is not
included in the case list).

Lecture 2 Slide 25PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Combinational Logic using casez

v ? = don’t-care
v Beware: MUST have default

statement in case not all cases are
covered!

26

Inside any always block, you should use the non-blocking assignement “<=“
instead of the block assignment “=“.

With <=, all assignment statements take effectly ONLY at the end of the
always block simultaneously.

With = assignment, assignment occurs sequentially. The synthesized results
is a single flip-flop instead of a shift register.

ALWAYS USE ”<=“ IN YOUR SEQUENTIAL CIRCUIT SPECIFICATION.

Lecture 2 Slide 26PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Blocking vs. Nonblocking Assignment
v <= is nonblocking assignment

– Occurs simultaneously with others

v = is blocking assignment
– Occurs in order it appears in file

H&H 203

27

Here are some general rules about assingments.

Lecture 2 Slide 27PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Rules for Signal Assignment
v Synchronous sequential logic, use:
 always_ff and nonblocking assignments (<=)

v Simple combinational logic, use continuous assignments (assign…)

v More complicated combinational logic, use:
 always_comb and blocking assignments (=)

v Assign a signal in ONLY ONE always statement or continuous
assignment statement.

